Symbols for trace class Hankel operators with good estimates for norms
نویسندگان
چکیده
منابع مشابه
Trace class operators and Hilbert-Schmidt operators
If X,Y are normed spaces, let B(X,Y ) be the set of all bounded linear maps X → Y . If T : X → Y is a linear map, I take it as known that T is bounded if and only if it is continuous if and only if E ⊆ X being bounded implies that T (E) ⊆ Y is bounded. I also take it as known that B(X,Y ) is a normed space with the operator norm, that if Y is a Banach space then B(X,Y ) is a Banach space, that ...
متن کاملHankel Operators and the Dixmier Trace on Strictly Pseudoconvex Domains
Generalizing earlier results for the disc and the ball, we give a formula for the Dixmier trace of the product of 2n Hankel operators on Bergman spaces of strictly pseudoconvex domains in C. The answer turns out to involve the dual Levi form evaluated on boundary derivatives of the symbols. Our main tool is the theory of generalized Toeplitz operators due to Boutet de Monvel and Guillemin. 2000...
متن کاملThe trace inequality and eigenvalue estimates for Schrödinger operators
© Annales de l’institut Fourier, 1986, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
متن کاملTrace Ideals for Pseudo-differential Operators and Their Commutators with Symbols in Α-modulation Spaces
The fact that symbols in the modulation space M1,1 generate pseudo-differential operators of the trace class was first mentioned by Feichtinger and the proof was given by Gröchenig [12]. In this paper, we show that the same is true if we replace M1,1 by more general α-modulation spaces which include modulation spaces (α = 0) and Besov spaces (α = 1) as special cases. The result with α = 0 corre...
متن کاملInvertibility of matrix Wiener-Hopf plus Hankel operators with APW Fourier symbols
Operators of Wiener-Hopf plus Hankel type have been receiving an increasing attention in the last years (see [1, 2, 4, 6, 10, 12–16]). Some of the interest in their study arises directly from concrete applications where these kind of operators appear. This is the case in problems of wave diffraction by some particular rectangular geometries which originate specific boundary-transmission value p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 1986
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089500006327